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Intermittency and exponent field dynamics in developed turbulence
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Spatiotemporal dynamics of intermittency in association with coarse-grained energy-dissipation rate fluc-
tuations is discussed. This is done first by phenomenologically constructing the probability density for expo-
nent field fluctuations that is introduced to characterize the energy-dissipation rate field, and then by proposing
the Langevin dynamics derived with the projection-operator method on the basis of the Navier-Stokes equa-
tion. With a Gaussian approximation for exponent fluctuations, spatiotemporal correlation functions for coarse-
grained energy-dissipation rate fluctuations are explicitly obtained.
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I. INTRODUCTION

The intermittency effect on the energy spectrum@1# and
the velocity structure functions as well as the ener
dissipation structure functions due to the coexistence of
bulent and less turbulent regions in fluid is one of the m
subjects of studies of isotropic homogeneous turbulence
only in developed turbulence@2,3# but also in the intermedi-
ate Reynolds number turbulence@4–7#. As formulated first
by Kolmogorov @8# and Obukhov@9#, it has been believed
that the intermittency comes in due to small scale fluct
tions of the coarse-grained energy-dissipation rate

e r~x!5
1

4pr 3/3
E

uru,r
e local~x1r!dr, ~1!

where

e local~x!5
n

2 (
i , j

S ]v i~x!

]xj
1

]v j~x!

]xi
D 2

~2!

is the local energy-dissipation rate per mass. Thev i(x) is the
i th component of the velocity field at a given time, andn is
the kinematic viscosity.

In the inertial subrange in between the Kolmogorov m
croscaleh and the energy injection scaleL, the velocity
structure function obeys the power lawcq

u(r )[^ur
q&;r z(q)

in a high Reynolds number~developed! turbulenceL/h
→`, whereur5u@v(x1r)2v(x)#•r/r u is the longitudinal
component of the velocity difference at locations separa
by the distancer chosen ash,r ,L @2,3#. The brackets
^•••& stand for the average over an ensemble describing
steady turbulent state. Similarly, the coarse-grained ene
dissipation rate structure function satisfies the power
cq

e(r )[^e r
q&;r t(q) in the inertial subrange@2,3#. The refined

self-similarity hypothesis@8,9# and the multifractal interpre
tation @10# leads to the relationz(q)5q/31t(q/3), although
it is not confirmed yet. If there exists no relevant fluctuati
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in e r , no intermittency is present. So it is quite natural to u
coarse-grained energy-dissipation rate fluctuations th
selves to study intermittency in turbulence.

The intermittency conventionally discussed is thus as
ciated with spatial fluctuations of the coarse-grained ener
dissipation rate. More precisely speaking, with the homo
neity assumption of turbulence, its statistics might
discussed for fluctuation at one position with the help of
time average of the fluctuation. However, in addition to th
the coarse-grained energy-dissipation rate is the field v
able defined for positionx, around which the averaging i
carried out, the velocity field temporally changes accord
to the Navier-Stokes equation. This fact implies that t
coarse-grained energy-dissipation ratee r(x,t) is a random
variable depending on both position and time. Therefore
order to study the global statistics of intermittency, sp
tiotemporal statistics of the energy-dissipation rate fluct
tions have to be studied. This is the fundamental motivat
of the present study. For this aim, in the present paper,
will phenomenologically construct the probability density f
energy-dissipation rate field and develop an approach
characterize the field dynamics of intermittency from a no
equilibrium statistical-physical viewpoint.

The paper is organized as follows. In Sec. II, we brie
discuss the intermittency on the energy-dissipation rate fl
tuation from the self-similarity viewpoint, and find that it
asymptotic probability density is characterized by the flu
tuation spectrumS(z). Then we will phenomenologically in-
troduce the probability density for fluctuations of energ
dissipation rate field, introducing the exponent field th
explicitly describes the self-similarity of the energ
dissipation rate field. In Sec. III, we will derive the Langev
equations and the corresponding Fokker-Planck equation
exponent fluctuations and energy-dissipation rate fluct
tions, starting with the Navier-Stokes equation with the a
of the projection-operator method developed in the noneq
librium statistical mechanics@11#. In Sec. IV, the spatiotem-
poral correlation functions for exponent fluctuations a
energy-dissipation rate fluctuations are explicitly obtain
with the parabolic approximation forS(z). Concluding re-
marks are given in Sec. V. Appendix A is devoted to t
details of the derivation of the Langevin equation for exp
nent field. The eigenvalue problem to derive temporal cor
©2003 The American Physical Society05-1
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lations of exponent fluctuations and energy-dissipation
fluctuations for spatially uniform fluctuations is given in Ap
pendix B.

II. SELF-SIMILARITY STATISTICS OF
ENERGY-DISSIPATION RATE FLUCTUATIONS

A. Probability density for the energy-dissipation rate

In this section we will first briefly review how to discus
the intermittency in the statistics of the coarse-grain
energy-dissipation rate fluctuatione r(x,t) @6–9#. Let us de-
fine discrete scales by

r n5Lb2n ~n50,1,2, . . . ,N!, ~3!

whereb(.1) is an arbitrary positive constant, and the ma
mum stepN5 logb(L/h) is associated with the Kolmogoro
scale h, the small cutoff of the inertial subrange, and
sufficiently large due to the high Reynolds number turb
lence.

We introduce exponents$zn% by

e r n11

e r n

5bzn. ~4!

If zn vanishes for anyn, then the coarse-grained energ
dissipation rate shows no fluctuation, which corresponds
the Kolmogorov theory in 1941@1#. However, exponents
$zn% are in general random variables. This fact is believed
be the origin of intermittency. Explicit statistical character
tics of $zn% are defined as follows. We assume that~i! the
zn’s obey the same statistics for alln, ~ii ! do not have any
statistical anomaly such as divergent variance, and that~iii !
the correlation function,̂dzi 1 jdzj&,(dzj5zj2^z&), decays
sufficiently rapidly in comparison withN. These assumption
are based on the self-similarity of the energy cascade pro
@8# since the assumed statistical characteristics of the r
indiceszn’s are free fromn indicating the scale and, there
fore, are free from the scaler n itself. Equation~4! is inte-
grated to yield

e r n
5eLS L

r n
D z̄n

, ~5!

where

z̄n5
1

n (
j 50

n21

zj . ~6!

Here, eL is the coarse-grained energy-dissipation rate av
aged over the energy injection scaleL. We, hereafter, assum
that fluctuation ofeL is small, and thateL is a constant.

Let us introduce the probability densityQr n
(z) for z̄n .

Since z̄n is the sum of random variables whose correlat
step is sufficiently short, it is expected thatQr n

(z) satisfies
the asymptotic form
02630
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Qr n
~z!;b2S(z)n5S L

r n
D 2S(z)

~7!

for largen, where the functionS(z) is independent ofn and
b, and fulfills the conditions

S~z!>0, S9~z!.0. ~8!

It is expected thatS(z) is a universal function that charac
terizes the self-similarity of energy cascade process in de
oped turbulence. The asymptotic form~7! with Eq. ~8! is the
consequence of the large deviation theory@12–14# in the
probability theory. The concavity condition ofS(z) implies
the existence of only one minimum atz5z0, whereS(z0)
vanishes. The log normal theory of intermittency@8,9# is
based on the central limit theorem and assumes the para
form for S(z).

The above asymptotic probability density thus leads to
probability densityPr(e) for e r takes the asymptotic form
@6,7,15#

Pr~e!;e21S L

r D 2S(zr (e))

;S L

r D 2S„zr (e)…2zr (e)

, ~9!

zr~e![

ln
e

eL

ln
L

r

. ~10!

Alternatively, the structure functioncq
e(r )5^e r

q& obeys the
asymptotic law

cq
e~r !;r t(q) ~11!

for h!r !L, where the characteristic functionst(q) and
S(z) are related to each other via the Legendre transform

t~q!5min
z

@S~z!2qz#. ~12!

It should be noted that the asymptotic form~9! can be
alternatively derived as follows. LetP(e,r ue8,r 8) (r ,r 8)
be the conditional probability density, in whiche r takes the
valuee in the region wheree r 8 takes the valuee8, andr and
r 8 are arbitrarily chosen in the inertial subrange. The se
similarity in the inertial subrange is formulated to satisfy t
chain relation@7#

P~e3 ,r 3ue1 ,r 1!5E P~e3 ,r 3ue2 ,r 2!P~e2 ,r 2ue1 ,r 1!de2 ,

~13!

for h!r 3!r 2!r 1!L. This equation has a structure simila
to that determining the steady state solution of the Chapm
Kolmogorov equation in the Markov process. The abo
three probability densities should take same asympt
forms for h!r i!L, (i 51,2,3). This is the explicit math-
ematical expression of self-similarity of the energ
dissipation rate fluctuations. As shown in Ref.@7#, this equa-
tion yields the solution
5-2
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P~e,r ue8,r 8!;e21S r 8

r D 2S„z(e,r ue8,r 8)…

, ~14!

z~e,r ue8,r 8!5

ln
e

e8

ln
r 8

r

, ~15!

whereS(z) is a concave function ofz. Particularly, assuming
that no fluctuation is present ineL and putting Pr(e)
5P(e,r ueL ,L), we find that the formula~14! is reduced to
Eq. ~9!.

The above consideration in deriving the probability de
sity Pr(e) raises two possibilities of the extension of th
above formulation to study the energy-dissipation rate fl
tuations. This is related with the problems on~i! how to
discuss the spatial fluctuations ofe r(x) and~ii ! how to derive
the temporal evolution of coarse-grained energy-dissipa
rate fluctuations. The second problem will be addresse
Sec. III. In the remaining part of this section, we will ph
nomenologically discuss a possible way to take into acco
the spatial fluctuations ofe r(x,t) for a given time, where the
time evolution ofe(x,t) is generated by that of the velocit
field v(x,t) in Eq. ~2!.

B. Generalization to fluctuations of the energy-dissipation
rate field

As one observes that the coarse-grained ene
dissipation ratee r(x) depends on the positionx, which is the
center of the coarse-graining procedure. Let us discuss
probability density of the energy-dissipation rate fluctuatio
for the whole system. In order to do that, we first define
probability density

Pr$e%[K)
x

d„e r~x!2e~x!…L ~16!

for the fluctuation field$e r(x)%, where$e(x)% is the value of
e r(x) and$e% stands for the set ofe(x) for the whole space
Here, we defined the product)x by

)
x

A~x![expFa23E ln A~x!dxG , ~17!

with a(!h) being a quantity which has the dimension
length. Without loss of generality, hereafter we puta51.
The bracketŝ•••& imply the average over a suitable stead
state turbulence ensemble.

The asymptotic form ofPr$e% in terms of the single poin
probability densityPr(e) may be constructed as follows
First, let us introduce the exponent fieldz̄r(x) by

e r~x!5eLS L

r D z̄r (x)

, z̄r~x!5

ln
e r~x!

eL

ln
L

r

. ~18!
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Although the energy-dissipation rate fielde r(x) is anomalous
in the sense that its statistics shows a power law behavio
r, the exponent fieldz̄r(x) is expected to have no anomalou
statistics. This is the fundamental hypothesis being com
ible with that made in the preceding section to derive
asymptotic form~9!. The probability density for the expo
nent field defined as

Qr$z%[K)
x

d„z̄r~x!2z~x!…L ~19!

is related to the probability densityPr$e% via

Pr$e%5QrH ln
e

eL

ln
L

r

J )
x

H e~x!ln
L

r J 21

. ~20!

It is expected that lnQr$z% is extensive with respect to spac
i.e., lnQr$z% is the quantity of the order of the system volum
that is chosen to be sufficiently large. This is the con
quence of the assumption that the exponent field is expe
to be nonanomalous in both space and time. Furthermor
there exist inhomogeneous fluctuations in exponent field
homogeneous turbulence, they may reduce the probab
density ;)x(L/r )2S„z(x)…5(L/r )2*S„z(x)…dx, which is the
correct expression if fluctuations in each position were in
pendent of each other. However, since the velocity field i
turbulent fluid has a spatial correlation at a given time,
energy-dissiparion rate field and, therefore, the expon
field has a spatial correlation. This fact implies that the pro
ability density for the exponent field cannot be given by t
simple product of probability densities at all positions. T
correlation structure is uniquely determined by the Navi
Stokes equation. However, we do not know details of
correlation behavior. So, we try to phenomenologically co
struct the probability density for the exponent field.

First, remember that we are now considering a homo
neous, isotropic turbulence, where if a spatial variation
exponent field appears in a some region at a given time, t
its spatial structure always tends to decay to a locally hom
geneous exponent field. One should note that this argum
does not mean that the exponent field ultimately tends t
homogeneous state. Instead, a strong chaotic nature of tu
lence incessantly creates a local inhomogeneity of expon
field. This consideration may be expressed in such a way
the true probability density for exponent field is smaller th
the simple product of probability densities for the who
space because of the presence of spatial inhomogeneity.
next problem is how to mathematically formulate the redu
tion of the probability density for exponent field in the pre
ence of the inhomogeneity of exponent field. To this ai
here we borrow the idea of the Landau theory of thermo
namic critical phenomena, particularly for the ferromagne
Ising spin system, where the reduction of the probabi
density for order parameter field in the presence of its spa
variation is expressed by adding a term given by the grad
of order parameter in the Landau Hamiltonian. In this way,
5-3
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take into account the inhomogeneity of exponent field, as
simplified approximation, we propose the form

Qr$z%}S L

r D 2H$z%

, ~21!

with

H$z%5E FS„z~x!…1
cr

2
„¹xz~x!…2Gdx, ~22!

wherecr is a positive constant, which might depend on t
coarse-graining scaler, and measures the stiffness of th
homogeneity of exponent field in the turbulence under c
sideration. The presence of the (¹xz)2 is crucial to the reduc-
tion of the probability in the presence of spatial inhomog
neity of exponent field. The above form is the simplest one
take into account the fluctuations of exponent field. With E
~21!, the probability density~16! is written as

Pr$e%;S L

r D 2F$ ln(e/eL)/ ln(L/r )%

, ~23!

F$z%5H$z%1E z~x!dx. ~24!

This is one of the fundamental proposals of the present
per. The stochastic dynamics should be constructed so a
yield the steady probability densities~21! and ~23!.

III. DERIVATION OF THE LANGEVIN EQUATION
FOR AN EXPONENT FIELD BASED ON THE

HYDRODYNAMIC EQUATION

Let us consider the 3D Navier-Stokes equation for inco
pressible fluid with the external force,

]v~x,t !

]t
1~v•“ !v~x,t !52“p~x,t !1n¹2v~x,t !1fext~x!,

~25!

“•v~x,t !50, ~26!

wherev(x,t) is the velocity field at timet, andp(x,t) is the
pressure field. Hereafter, the external forcefext(x) is assumed
to be time independent, and its characteristic length of spa
variation is L. Namely, the spatial power spectrumI k
5 1

3 (a5x,y,z^u* f ext,a(x)e2 ik•x dxu2& of fext(x) has significant
magnitude at the wave numberkL with ukLu52p/L. The
simplest form of the external field isfext(x)5A cos(kL•x
1u0) with a constant magnitude vectorA and a constan
phaseu0. However, the universal nature of developed turb
lence suggests that the statistics in the inertial subrange
not depend on details of the mechanism of the external f
ing. Therefore, hereafter, we do not need to impose furt
detail on the external field. The state vector composed of
whole components of coordinates and positions, defined

X~ t !5$vx~x,t !,vy~x,t !vz~x,t !%5„X1~ t !,X2~ t !,X3~ t !, . . . …
~27!
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contains the full microscopic informations of the veloci
field at timet. In terms of the state vectorX(t), the Navier-
Stokes equation~25! is formally rewritten as the set of au
tonomous equations of motion

Ẋ~ t !5F„X~ t !…. ~28!

Time evolution of any spatially coarse-grained variable
determined by this set of equations of motion. For an ar
trary initial condition, the equation of motion~28! has a
bound solution in the state space.

The distribution

dX~ t ![)
j

d„Xj~ t !2Xj… ~29!

obeys the equation of motion

]dX~ t !

]t
52(

j

]

]Xj
@F j~X!dX~ t !#[HdX~ t !. ~30!

Let G(t) be an arbitrary function ofX(t), i.e., G(t)
5G$X(t)%. By noting

G~ t !5E dX~ t !G$X%dX5E dX~0!etL(X)G$X%dX,

~31!

the time evolution ofG(t) is determined by

Ġ~ t !5LG~ t !, ~32!

with the linear differential operator

L5(
j

F j~X!
]

]Xj
, ~33!

whereX5X(0). TheoperatorL is adjoint toH, and satisfies
the relation

L~G1G2!5~LG1!G21G1LG2 ~34!

for arbitrary functionsG1 andG2 of X.
By choosing

G~ t !5)
x

d„z̄r~x,t !2z~x!…[gz~ t !, ~35!

where z̄r(x,t) is defined viaz̄r(x,t)5 ln„e r(x,t)/eL…/ ln(L/r)
with the coarse-grained energy-dissipation ratee r(x,t) de-
fined with the velocity fieldv(x,t) at time t. The subscriptz
stands for the set$z(x)%. Thegz(t) is thus found to obey

]gz~ t !

]t
5Lgz~ t !. ~36!

This is our starting equation to derive the Langevin dynam
for z̄r(x,t) ande r(x,t).

We assume that the steady turbulence described by
~25! and ~26! with an additional boundary condition is
5-4
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steady spatiotemporal chaos, and that for the steady tu
lence under consideration, the ergodicity holds. Namely,
ensemble average suitably chosen is equal to the long-
average uniquely determined for almost all initial condition
As known in the theory of dynamical systems, no invaria
density generally exists. By noting this fact, the average p
cedure in the following discussion will be done by using t
time average instead of the ensemble average. Let us in
duce the invariant measurem(X) by

lim
t→`

1

t E0

t

G$X~s!%ds5E G$X%dm~X![^G&, ~37!

which holds for almost all initial conditionsX(0) and an
arbitrary functionG$X(0)%, whereG$X(s)% is finite for any
time. Taking the long-time average ofdG$X(t)%/dt
5LG$X(t)%, one obtains

E LG$X%dm~X!5^LG&50. ~38!

The combination of Eqs.~38! and ~34! yields

^@LG1#G2&52^G1@LG2#& ~39!

for arbitrary finite functionsG1 andG2 of X.
In terms of the above definition of average, we define

projection operatorP by

PG$X%5E ^G$X%;z&gz~0!dz5^G$X%; z̄~0!&, ~40!

wherez̄(t) stands for the set$z̄(x,t)%, and

^G$X%;z&[E G$X%
gz~0!

Qr
0$z%

dm~X!5^G$X%gz~0!&/Qr
0$z%,

~41!

with Qr
0$z% being the steady probability density~21! for ex-

ponent field. The projection operatorP eliminates degrees o
freedom except the exponent field. As shown in Appendix
by making use of the above projection operator, the equa
of motion ~36! can be transformed into the following Lang
vin equation@11#:

]gz~ t !

]t
5Lgz~ t !1Fz~ t !. ~42!

In deriving Eq. ~42!, we used three major approximation
For details, see below. Here,L is the linear operator define
by

LG~z!5E d

dz~x! FG r~z~x!!Qr
0$z%

d

dz~x! H G~z!

Qr
0$z%

J Gdx,

~43!

andFz(t) is the Langevin random force defined by
02630
u-
e
e
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t
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Fz~ t !52E d

dz~x!
@Rr~x,t !gz~0!#dx, ~44!

where d/dz(x) is the functional derivative.Rr(x,t) is the
random force appearing in the Langevin equation ofz̄(x,t),
@see Eq.~52!#, and is assumed to be Gaussian white, satis
ing

^Rr~x,t !&50, ~45!

^Rr~x,t !Rr~x8,0!;z&52G r~z!d~x2x8!d~ t !, ~46!

i.e., the noise strengthG r(z) is given by

G r~z!5E
0

`E ^Rr~x,t !Rr~x8,0!;z&d~x2x8!dt. ~47!

The microscopic expression ofRr(x,t) is given in Appendix
A. In deriving Eq. ~42!, we have used three main approx
mations@16#. The first is that we assumed the absence of a
collective motion of the exponent field. The second is th
the linear operatorL is terminated at the second order wi
respect tod/dz, which makes the master equation reduce
the Fokker-Planck equation. This is related to the Gauss
approximation forRr(x,t). Third, we assumed that the La
gevin equation for the exponent field$z̄r(x,t)% derived by
eliminating other dynamical variables is Markoffian, i.e.,
does not depend on exponent field in the past befort,

$z̄r(x,s)%(s,t). The Markovian approximation can be just
fied if the time scales of the exponent field and the Lange
random forceRr(x) are sufficiently separated.

For the probability densities

Qr$z,t%[^gz~ t !&, ~48!

Pr$e,t%[K)
x

d„e r~x,t !2e~x!…L
5QrH ln

e

eL

ln
L

r

,tJ )
x

H e~x!ln
L

r J 21

, ~49!

taking the ensemble average of Eq.~42!, where the ensemble
is same as the true turbulence ensemble, we get the Fok
Planck equations

]Qr$z,t%

]t
5E d

dz~x! FG r„z~x!…Qr
0$z%

d

dz~x! H Qr$z,t%

Qr
0$z%

J Gdx,

~50!
5-5
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]Pr$e,t%

]t
5S ln

L

r D 2E d

de~x!F G rS ln
e~x!

eL

ln
L

r

D
3„e~x!…2Pr

0$e%
d

de~x! H Pr$e,t%

Pr
0$e%

J G dx,

~51!

where Pr
0$e% is the steady probability density~23! for

energy-dissipation rate field. In deriving Eq.~51!, we used
the relation

d

de~x! Fe~x!)
y

$e~y!%21G5
d

de~x!
@e~x!e2* ln e(y)dy#50.

We have no solid criterion to determine ther dependence
of the noise intensityG r , although it is, in principle, deter
mined by the Navier-Stokes dynamics. However, since
assume that the intermittency characteristic in the iner
subrange is completely determined by the statistics ofz̄r ,
Rr(x,t) belongs to the ‘‘microscopic’’ degrees of freedom
the sense of the projected-out part in the language of
projection-operator approach explained in Appendix A b
sides those of the inertial subrange. So it is natural to use
approximation that the damping constantG r(z) is indepen-
dent of the ‘‘macroscopic’’ variablez. This consideration
might conclude thatG r(z) has no explicit dependence o
both z andr. Hereafter, for simplicity, we assume thatG r(z)
is free fromz.

From Eq.~42!, we obtain the following Langevin equa
tions:

ż̄~x,t !52S G r ln
L

r D dH$z̄r%

d z̄r

1Rr~x,t !, ~52!

ė r~x,t !5S ln
L

r D e rF2S G r ln
L

r D dH$z̄r%

d z̄r
U

z̄r5 ln~er /eL!/ ln~L/r !

1Rr~x,t !G . ~53!

Equations Eqs.~50! and ~51! are the Fokker-Planck equa
tions corresponding, respectively, to the Langevin equati
~52! and ~53!. Furthermore, by using the assumption~21!
with Eq. ~22!, the above Langevin equations are written in

ż̄~x,t !5S G r ln
L

r D @2S8~ z̄r !1cr¹x
2z̄r #1Rr~x,t !, ~54!

ė r~x,t !5S ln
L

r D e rF S G r ln
L

r D H 2S8S lne r /eL

lnL/r D1cr¹x
2lne r /eL

lnL/r J
1Rr~x,t !G . ~55!
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These are the fundamental equations describing the
tiotemporal dynamics of exponent field and the coar
grained energy-dissipation rate fluctuations.

IV. LANGEVIN DYNAMICS FOR EXPONENT
FLUCTUATIONS AND ENERGY-DISSIPATION

RATE FIELD

A. Homogeneous fluctuations

First, we consider the case whene r(x,t) does not strongly
depend on the positionx. In this case,e r(x,t) is assumed to
be spatially uniform, as the lowest approximation, and
exponentz̄r(t) defined by

e r~ t !5eLS L

r D z̄r (t)

~56!

is also spatially uniform. In this case, it is sufficient to u
the probability densities by

Qr~z,t !5^d~ z̄r~ t !2z!&, ~57!

Pr~e,t !5^d~e r~ t !2e!&5
e21

ln L/r
Qr S ln e/eL

ln L/r
,t D , ~58!

instead of the forms~48! and ~49!.
With the above uniformity approximation on expone

field, the Langevin equations are written as

ż̄r~ t !52S G r ln
L

r DS8~ z̄r~ t !!1Rr~ t !, ~59!

ė r~ t !5S ln
L

r D e rF2S G r ln
L

r DS8S ln e r /eL

ln L/r D1Rr~ t !G ,
~60!

where S8(z)5dS(z)/dz and Rr(t) is the Gaussian-white
noise with the statistics

^Rr~ t !&50, ^Rr~ t !Rr~ t8!&52G rd~ t2t8!. ~61!

The Fokker-Planck equation for the probability dens
Qr(z,t) is given by

]Qr~z,t !

]t
5G r

]

]zFQr
0~z!

]

]z S Qr~z,t !

Qr
0~z!

D G[Lr~z!Qr~z,t !,

~62!

whereQr
0(z)}(L/r )2S(z) is the steady probability density fo

z̄r . The probability densityPr(e,t) for e r(t) obeys

]Pr~e,t !

]t
5G r S ln

L

r D 2 ]

]e F e2Pr
0~e!

]

]e S Pr~e,t !

Pr
0~e!

D G
[Lr~e!Pr~e,t !, ~63!

where Pr
0(e)}e21(L/r )2S„zr (e)…, with zr(e)5 ln(e/eL)/

ln(L/r) as the steady probability density.
5-6
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One specific characteristic of the equation of motion~60!
for e r(t) is that the random force comes in a multiplicati
way. So, for a small value ofe r(t) at time t, it suddenly
increases because of the concavity ofS(z). We carried out
the time integration of Eq.~60! for the two models;~i! the
log normal model@8,9#,

S~z!5
1

2m S z1
m

2 D 2

, ~64!

with the intermittency exponentm, and~ii ! the She-Leveque
model @15,17#,

S~z!5z1

2

3
2z

ln
3

2

lnS 2

3
2z

2e ln
3

2

D . ~65!

The time integration was carried out by using the Eu
method

z̄r~ t j 11!5 z̄r~ t j !2S G r ln
L

r DS8@ z̄r~ t j !#Dt1A2G rDtN~ t j !,

~66!

where t j5 j Dt, ( j 51,2,3, . . . ,), Dt being the time incre-
ment, andN(t j ) is the Gaussian noise with the zero me
^N(t j )&50 and the correlation function̂N(t j )N(tk)&5d jk .
The time evolutions ofe r(t) calculated withz̄r(t) for the two
models are drawn in Fig. 1. One observes that the inter
tency develops as the coarse-graining scaler is reduced. As

FIG. 1. Temporal evolutions of coarse-grained energy-di
pation ratee r(t) for homogeneous fluctuation for~a! the log normal
model ~64! with m50.22 and~b! the She-Leveque model~65!.

Time evolution ofe r(t) is plotted by observing that ofz̄t(t). For
numerical integration of Eq.~59!, we used the Euler method wit
the time incrementDt51023, and put G r51. As the coarse-
graining scale is reduced, the intermittency characteristic devel
02630
r

it-

discussed above, the existence of sudden changes ofe r(t)
being an eminent characteristic of intermittency is the c
sequence of the fact that the random force comes in a m
tiplicative way in the time evolution ofe r(t).

In order to analytically calculate the time correlation fun
tion of e r(t), we hereafter in this paper employ the Gauss
model for Qr

0(z). When Qr
0(t) is not a Gaussian, the tim

correlation functions can be obtained by solving the eig
value problem of the Fokker-Planck operatorLr(z) ~Appen-
dix B!. Let us put

S~z!5
1

4D
~z2z0!2. ~67!

z0 is the position of the minimum ofSandD is the curvature
of the functionS at the minimum. This expression is vali
near z0. Since the average value ofe r(t)5eL(L/r ) z̄r (t) is
independent ofr because of the homogeneity of turbulenc
we find @15#

z052D,0. ~68!

By using the equation of motion

ż̄r~ t !52ar~ z̄r2z0!1Rr~ t !, ~69!

ė r~ t !5S ln
L

r D e rF2ar S ln e r /eL

ln L/r
2z0D1Rr~ t !G , ~70!

ar5
G r

2D
ln

L

r
, ~71!

the time correlation functions

Cr ,z~ t2t8!5^z̄r~ t !z̄r~ t8!&2z0
2 , ~72!

Cr ,e~ t2t8!5^e r~ t !e r~ t8!&2eL
2 ~73!

are easily obtained as

Cr ,z~ t2t8!5
2D

ln L/r S L

r D 2(Gr /2D)ut2t8u

, ~74!

Cr ,e~ t2t8!5eL
2F S L

r D 2D(L/r )2(Gr /2D)ut2t8u

21G . ~75!

Particularly, we get

Cr ,e~ t2t8!5eL
2F S L

r D 2D(12ar ut2t8u)

21G ~76!

for small ut2t8u, and the correlation function decays exp
nentially as

Cr ,e~ t2t8!5eL
2S 2D ln

L

r D S L

r D 2(Gr /2D)ut2t8u

~77!

i-

s.
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for sufficiently large ut2t8u. The functionCr ,e(t) and its
Fourier transformI r(v), the power spectrum ofe r(t), are
shown in Fig. 2.

B. Inhomogeneous fluctuations

Next, we take into account spatially inhomogeneous fl
tuations ofz̄(x,t) ande r(x,t) with the Gaussian approxima
tion

H$z%5E F 1

4D
„z~x!2z0…

21
cr

2
„¹xz~x!…2Gdx, ~78!

whereD52z0(.0). With this approximation, the Langevi
equations are obtained as

ż̄r~x,t !5~2ar1br¹x
2!~ z̄r2z0!1Rr~x,t !, ~79!

ė r~x,t !5S ln
L

r D e rF ~2ar1br¹x
2!S ln e r /eL

ln L/r
2z0D1Rr~x,t !G ,

~80!

where

ar5
G r

4D
ln

L

r
, br5crG r ln

L

r
. ~81!

With the use of the Fourier transformation

FIG. 2. ~a! Time correlation functionCr ,e(t) and ~b! the power
spectrum ofe r(t) in the homogeneous fluctuation case. Parame
values areL/r 5512,z052D520.11.
02630
-

ck5E e2 ik•xc~x!dx, c~x!5
1

~2p!3E eik•xck dk,

~82!

the equation of motion for exponent fluctuations is written

ż̄r ,k~ t !52~ar1brk
2!z̄r ,k~ t !1Rr ,k~ t !. ~83!

This gives the correlation function

^@ z̄r~x,t !2z0#k@ z̄r~x8,t8!2z0#k8&

5~2p!3
G r

ar1brk
2
d~k1k8!e2(ar1brk

2)ut2t8u,

~84!

i.e.,

Cr ,z~x2x8,t2t8!

[^z̄r~x,t !z̄r~x8,t8!&2z0
2 ~85!

5
1

~2p!3E G r

ar1brk
2

e2(ar1brk
2)ut2t8ueik•(x2x8)dk. ~86!

Furthermore, the Gaussian property ofz̄r enables us to find
the expression of the correlation function fore r(x,t) as

Cr ,e~x2x8,t2t8!

[^e r~x,t !e r~x8,t8!&2eL
2 ~87!

5eL
2FexpH S ln

L

r D 2

Cr ,z~x2x8,t2t8!J 21G . ~88!

Particularly, one obtains

Cr ,z~0,t !}
~L/r !2(Gr /4D)utu

utu3/2
, ~89!

Cr ,z~x2x8,0!}
e2ux2x8u/jr

ux2x8u
, ~90!

wherej r5A2Dcr is the correlation length of exponent fiel
fluctuations. We thus find that the time correlation functi
and the spatial correlation function decay in a power l
form, respectively, for short time ast23/2 and for short dis-
tance asux2x8u21, and that they decay exponentially, r
spectively, for long time and for long distance.

V. SUMMARY AND CONCLUDING REMARKS

In the present paper, we developed a stochastic theor
the energy-dissipation rate fluctuations in developed tur
lence that are closely related to the intermittency effect
velocity structure functions and energy-dissipation rate str
ture functions. This was done first by proposing the sta
probability density for exponent field defined via coars
grained energy-dissipation rate, constructed by phenome
logically taking into account spatial inhomogeneity of exp
nent field on the basis of the single-point probability dens

r

5-8
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considering the asymptotic form}(L/r )2S(z). Applying the
projection-operator method, we derived the Langevin
namics for exponent field and coarse-grained ener
dissipation rate field. Furthermore, making use of the
rabola approximation for the fluctuation spectrumS(z), we
explicitly obtained the spatiotemporal correlation functio
for exponent fluctuations and coarse-grained ener
dissipation rate fluctuations for both homogeneous and in
mogeneous fluctuations. It was found that the temporal
spatial correlation functions typically decay in an expone
tial manner for long time and distance.

Let us add a few remarks on the present approach. A
well known in nonequilibrium statistical physics near the
mal equilibrium, the projection-operator technique is qu
useful to derive a closed stochastic dynamics for relev
variables under consideration. In the present paper, we
to find a closed dynamics for the exponent field and equ
lently the energy-dissipation rate fluctuations with the aid
this formalism. In order to get meaningful results, we furth
proposed three major approximations. The first is the us
a pure dissipative dynamics for exponent field, the secon
the Fokker-Planck approximation, and the third the Mark
approximation. Unfortunately, we have no solid confirmati
to employ these approximations. Although these approxim
tions make the treatment tractable, their physical fundati
are not so obvious. Their validity or invalidity should b
examined experimentally as well as theoretically in futu
Finally, unfortunately no works on the statistical dynamics
energy-dissipation rate fluctuations are available as far as
authors know. We hope that laboratory experiments and
merical simulations provide data on them. The present
sults, particularly, Eqs.~89! and ~90!, should be compared
with experimental and numerical results in future.

APPENDIX A: PROJECTION-OPERATOR DERIVATION
OF EXPONENT FIELD DYNAMICS

The Langevin dynamics forz̄r(x,t) can be derived in a
way similar to that in deriving the macroscopic equations
motion in thermodynamic systems as in Ref.@11# developed
in nonequilibrium statistical mechanics near thermal equi
rium. This is carried out as follows. By operating the ident

detL

dt
5etLPL1E

0

t

ds e(t2s)LPLes(12P)L~12P!L

1et(12P)L~12P!L ~A1!

to gz(0), Eq. ~36! is rewritten into

]gz~ t !

]t
52E d

dz~x!
@Vr ,x~z!gz~ t !#dx

1E
0

tE ^LFz~s!;a&ga~ t2s!da ds1Fz~ t !,

~A2!

where we defined
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Vr ,x~z!5^Lz̄r~x,0!;z&5^ ż̄r~x,0!;z&, ~A3!

Fz~ t !52E dx
d

dz~x!
et(12P)L@Rr~x,0!gz~0!#, ~A4!

Rr~x,0!5~12P!Lz̄r~x,0!5~12P! ż̄r~x,0!. ~A5!

Here,d/dz(x) is the functional derivative, and we used th
equality

Lgz~0!52E d

dz~x!
@$Lz̄r~x,0!%gz~0!#dx. ~A6!

The quantityVr ,x(z) is called the streaming velocity an
does not vanish provided that a collective motion in the
ponent field is present@11#.

The integrand of the time integration in the second term
the right hand side of Eq.~A2! is written as

E F E $LFz~s!%
ga~0!

Qr
0$a%

dm~X!Gga~ t2s!da

52E F E Fz~s!Lga~0!dm~X!Gga~ t2s!

Qr
0$a%

da

5E E ga~ t2s!

Qr
0$a%

d

da~y!

3@^Fz~s!$Lz̄r~y,0!%;a&Qr
0$a%#dady

5E E ga~ t2s!

Qr
0$a%

d

da~y!

3@^Fz~s!Rr~y,0!;a&Qr
0$a%#dady, ~A7!

where we noticed the relation~39!. Multiplying z(x) to Eq.
~A2! and integrating it overz5$z(x)%, one obtains

ż̄r~x,t !5Vr ,x„z̄r~ t !…1E
0

t

Dr ,x„z̄r~ t2s!,s…ds1Rr~x,t !,

~A8!

wherez̄r(t) stands for the set$z̄r(x,t)%, and we have defined

Dr ,x~z,s!5E 1

Qr
0$z%

d

dz~y!
@^Rr~x,s!Rr~y,0!;z&Qr

0$z%#dy,

~A9!

Rr~x,t !5et(12P)LRr~x,0!. ~A10!

Equation ~A8! can be regarded as the Langevin equat
with the Langevin random forceRr(x,t), whose temporal
evolution is generated by the modified evolution opera
(12P)L @11#.

By carrying out the partial integration in Eq.~A7! with
the use of the approximation
5-9
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Fz~ t !'2E d

dz~x!
@R~x,t !gz~0!#dx, ~A11!

Eq. ~A7! is written as

E E d

dz~x! F ^Rr~x,s!Rr~y,0!;z&Qr
0$z%

d

dz~y!

3H gz~ t2s!

Qr
0$z%

J Gdydx. ~A12!

The approximation~A11! makes the expansion with respe
to d/dz and terminates at the second order@16#. Using the
approximation~A12! and assuming that no collective motio
exists, which impliesVr ,x(z) vanishes, we obtain the Lange
vin equation~42!.

APPENDIX B: TIME CORRELATION FUNCTION FOR
SPATIALLY UNIFORM FLUCTUATIONS

Let G1(e) and G2(e) are arbitrary functions ofe. The
time correlation functionC(t)[^G1„e r(t)…G2„e r(0)…& is
given by

C~ t !5E G1~e!etLr (e)@Pr
0~e!G2~e!#de, ~B1!

whereLr(e) is the time evolution operator forPr(e,t). In
terms of the exponent fluctuationz5 ln(e/eL)/ln(L/r), the
above is rewritten into
ov

li

zi

.

,

an

02630
C~ t !5E G1XeLS L

r D zCetLr (z)FQr
0~z!G2XeLS L

r D zCGdz,

~B2!

whereLr(z) is the time evolution operator forQr(z,t).
The eigenvalue equation for the operatorLr(z) is written

as

Lr~z!Qr
l~z!52lQr

l~z!, ~Rel>0!. ~B3!

There exists only one eigenfunction whose eigenvalue v
ishes (l50), which is identical to the steady probabilit
density Qr

0(z). Except this particular eigenvalue, all oth
eigenvalues satisfy Rel.0. By assuming the completenes
of the eigenfunctionsQr

l(z), and by expanding@•••# in Eq.
~B2! as

Qr
0~z!G2XeLS L

r D zC5(
l

kr
lQr

l~z!, ~B4!

with expansion coefficientskr
l , the correlation function is

obtained as

C~ t !5(
l

ar
le2lt5 (

l(Þ0)
ar

le2lt1^G1&^G2&, ~B5!

where

ar
l5kr

lE G1XeLS L

r D zCQr
l~z!dz. ~B6!
l
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