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Intermittency and exponent field dynamics in developed turbulence
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Spatiotemporal dynamics of intermittency in association with coarse-grained energy-dissipation rate fluc-
tuations is discussed. This is done first by phenomenologically constructing the probability density for expo-
nent field fluctuations that is introduced to characterize the energy-dissipation rate field, and then by proposing
the Langevin dynamics derived with the projection-operator method on the basis of the Navier-Stokes equa-
tion. With a Gaussian approximation for exponent fluctuations, spatiotemporal correlation functions for coarse-
grained energy-dissipation rate fluctuations are explicitly obtained.
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I. INTRODUCTION in €,, NO intermittency is present. So it is quite natural to use
coarse-grained energy-dissipation rate fluctuations them-
The intermittency effect on the energy spectriihand  selves to study intermittency in turbulence.
the velocity structure functions as well as the energy- The intermittency conventionally discussed is thus asso-
dissipation structure functions due to the coexistence of tureiated with spatial fluctuations of the coarse-grained energy-
bulent and less turbulent regions in fluid is one of the maindissipation rate. More precisely speaking, with the homoge-
subjects of studies of isotropic homogeneous turbulence nefeity assumption of turbulence, its statistics might be
only in developed turbulend@,3] but also in the intermedi- discussed for fluctuation at one position with the help of the
ate Reynolds number turbulenpé—-7]. As formulated first time average of the fluctuation. However, in addition to that,
by Kolmogorov[8] and ObukhoV 9], it has been believed the coarse-grained energy-dissipation rate is the field vari-
that the intermittency comes in due to small scale fluctuaable defined for positiox, around which the averaging is
tions of the coarse-grained energy-dissipation rate carried out, the velocity field temporally changes according
to the Navier-Stokes equation. This fact implies that the
1 coarse-grained energy-dissipation raté¢x,t) is a random
:4 3 f €iocal X+ 1)dr, @ variable depending on both position and time. Therefore, in
aro3J |r|<r - . .

order to study the global statistics of intermittency, spa-

tiotemporal statistics of the energy-dissipation rate fluctua-

tions have to be studied. This is the fundamental motivation
» i) av;(X) 2 of_ the present stuc_iy. For this aim, in the present paper, we

€0cal X) = > E o + X 2 will phenomenologically construct the probability density for
h ] ' energy-dissipation rate field and develop an approach to

) o ) characterize the field dynamics of intermittency from a non-
is the local energy-dissipation rate per mass. #}{&) is the equilibrium statistical-physical viewpoint.

ith component of the velocity field at a given time, ants The paper is organized as follows. In Sec. Il, we briefly
the kinematic viscosity. _discuss the intermittency on the energy-dissipation rate fluc-
In the inertial subrange in between the Kolmogorov mi-y,ation from the self-similarity viewpoint, and find that its
croscalen and the energy injection scale the velocity  asymptotic probability density is characterized by the fluc-
structure function obeys the power lagg(r)=(uf)~r“?  yation spectruns(z). Then we will phenomenologically in-
in a high Reynolds numbe(developed turbulencel/n  troduce the probability density for fluctuations of energy-
—oo, whereu,=|[v(x+r)—v(x)]-r/r| is the longitudinal dissipation rate field, introducing the exponent field that
component of the velocity difference at locations separate@xplicitly describes the self-similarity of the energy-
by the distancer chosen asp<r<L [2,3]. The brackets (dissipation rate field. In Sec. lll, we will derive the Langevin
(---) stand for the average over an ensemble describing thequations and the corresponding Fokker-Planck equations for
steady turbulent state. Similarly, the coarse-grained energyexponent fluctuations and energy-dissipation rate fluctua-
dissipation rate structure function satisfies the power lawions, starting with the Navier-Stokes equation with the aid
P5(r)=(e&)~r™D in the inertial subrangf,3]. The refined  of the projection-operator method developed in the nonequi-
self-similarity hypothesi$8,9] and the multifractal interpre- librium statistical mechanicgl1]. In Sec. 1V, the spatiotem-
tation[10] leads to the relatiod(q) = g/3+ 7(q/3), although  poral correlation functions for exponent fluctuations and
it is not confirmed yet. If there exists no relevant fluctuationenergy-dissipation rate fluctuations are explicitly obtained
with the parabolic approximation fo8(z). Concluding re-
marks are given in Sec. V. Appendix A is devoted to the
*Electronic address: fujisaka@i.kyoto-u.ac.jp details of the derivation of the Langevin equation for expo-
TElectronic address: nakayama@acs.i.kyoto-u.ac.jp nent field. The eigenvalue problem to derive temporal corre-

€:(X)

where
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lations of exponent fluctuations and energy-dissipation rate -S(2)
fluctuations for spatially uniform fluctuations is given in Ap- Qr (2)~b %A= (r_) (7)
pendix B. n

for largen, where the functior§(z) is independent of and

Il. SELF-SIMILARITY STATISTICS OF b, and fulfills the conditions
ENERGY-DISSIPATION RATE FLUCTUATIONS
S(z)=0, S'(z)>0. (8

A. Probability density for the energy-dissipation rate
It is expected thaB(z) is a universal function that charac-

(%erizes the self-similarity of energy cascade process in devel-
ped turbulence. The asymptotic fok@) with Eq. (8) is the
consequence of the large deviation thept2—14 in the
probability theory. The concavity condition &(z) implies
r,=Lb™" (n=0,1,2...N), (3) the _existence of only one minimum at7, \{vhereS(zq)
vanishes. The log normal theory of intermitten®,9] is
based on the central limit theorem and assumes the parabolic
form for S(2).

The above asymptotic probability density thus leads to the
_probability densityP,(e) for e, takes the asymptotic form

In this section we will first briefly review how to discuss
the intermittency in the statistics of the coarse-graine
energy-dissipation rate fluctuatian(x,t) [6—9]. Let us de-
fine discrete scales by

whereb(>1) is an arbitrary positive constant, and the maxi-
mum stepN=log,(L/#) is associated with the Kolmogorov
scale n, the small cutoff of the inertial subrange, and is
sufficiently large due to the high Reynolds number turbu

lence. [6.7.19
We introduce exponentg,} by L\ =Sz [\ ~S@(e)-z(e)
Pr(6)~6_1<—) ~(—) )
r r
ern+1
——=b", (4)
€ €
n |n_
If z, vanishes for anyn, then the coarse-grained energy- Zr('E)Z_L' (10

dissipation rate shows no fluctuation, which corresponds to Inr
the Kolmogorov theory in 19411]. However, exponents

{z,} are in general random variables. This fact is believed tOAIternativer, the structure functioss(r)=(e% obeys the
be the origin of intermittency. Explicit statistical characteris- asymptotic law a '

tics of {z,} are defined as follows. We assume tliatthe

z,'s obey the same statistics for al (ii) do not have any w;(r)~rT(Q) (11)
statistical anomaly such as divergent variance, and (that

the correlation function( 6z ,;6z;),(6zj=2;—(z)), decays for p<r<L, where the characteristic functiongq) and
sufficiently rapidly in comparison witll. These assumptions S(z) are related to each other via the Legendre transform,
are based on the self-similarity of the energy cascade process

[8] since the assumed statistical characteristics of the ratio 7(q)=min[S(2) —qz]. (12
indicesz,’s are free fromn indicating the scale and, there- z
fore, are free from the scalg, itself. Equation(4) is inte-

grated to yield It should be noted that the asymptotic fori®) can be

alternatively derived as follows. Le®(e,r|e’,r’) (r<r’)
— be the conditional probability density, in whieh takes the
L\ . . )
(_ 5) valuee in the region where,, takes the value’, andr and
' r’ are arbitrarily chosen in the inertial subrange. The self-
similarity in the inertial subrange is formulated to satisfy the
where chain relation 7]

B P(es,r r :J P(es,r ro)P(e,,r ryd
Zn:ﬁ 2 Zj' (6) (631 3|Elv l) (631 3|621 2) (621 2|611 l) €2,
- (13

Here, €, is the coarse-grained energy-dissipation rate averfor 7<r3<r,<r;<L. This equation has a structure similar

aged over the energy injection scaleWe, hereafter, assume to that determining the steady state solution of the Chapman-

that fluctuation ofe, is small, and that, is a constant. ;olmogor(gv be'lqt;agon '? the rl]\ﬂaTEO\t/ II(DFOCGSS- The ab?VtQ

; " ; 5 ree probabili ensities should take same asymptotic

_ Let_us- introduce the probablllty- densigy,, (2) for z,. ~ forms for p<r;<L, (i=1,2,3). This is the explicit math-

Slnce.zn is _th_e sum of randpm variables whose co_rrglat|onematica| expression of self-similarity of the energy-

step is sufficiently short, it is expected th@f (z) satisfies  dissipation rate fluctuations. As shown in Rgf, this equa-

the asymptotic form tion yields the solution
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1\ ~S@erle’ ) Although the energy-dissipation rate fiedg(x) is anomalous

P(er|e',r')~ El(?) , (14)  in the sense that its statistics shows a power law behavior in
r, the exponent field, (x) is expected to have no anomalous

statistics. This is the fundamental hypothesis being compat-

Ine ible with that made in the preceding section to derive the
o ! asymptotic form(9). The probability density for the expo-
2erler')=—7, (159 nent field defined as
In—
r
whereS(z) is a concave function aof. Particularly, assuming iz} <1_x[ 0z (x) Z(X))> (19

that no fluctuation is present i, and putting P,(e€)
=P(e,r|e ,L), we find that the formuld14) is reduced to is related to the probability densify,{e} via

Eq. (9).
The above consideration in deriving the probability den- | €

sity P,(€) raises two possibilities of the extension of the ne—L L) !

above formulation to study the energy-dissipation rate fluc- Plet=Q — II eI (20)
. . . . . X

tuations. This is related with the problems @n how to In—

discuss the spatial fluctuations gf{x) and(ii) how to derive

the temporal evolution of coarse-grained energy-dissipation

rate fluctuations. The second problem will be addressed iff 1S expected that IQ{z} is extensive with respect to space,
Sec. IIl. In the remaining part of this section, we will phe- 18- INQ{z} is the quantity of the order of the system volume
nomenologically discuss a possible way to take into accourff?@t iS chosen to be sufficiently large. This is the conse-
the spatial fluctuations o, (x,t) for a given time, where the duénce of the assumption that the exponent field is expected

time evolution ofe(x,t) is generated by that of the velocity [© P& nonanomalous in both space and time. Furthermore, if
field v(x,t) in Eq. (2). there exist inhomogeneous fluctuations in exponent field in

homogeneous turbulence, they may reduce the probability
density ~II,(L/r)~SEN=(L/r) IS \which is the
correct expression if fluctuations in each position were inde-
pendent of each other. However, since the velocity field in a
As one observes that the coarse-grained energyturbulent fluid has a spatial correlation at a given time, the
dissipation rate:, (x) depends on the position which is the  energy-dissiparion rate field and, therefore, the exponent
center of the coarse-graining procedure. Let us discuss theld has a spatial correlation. This fact implies that the prob-
probability density of the energy-dissipation rate fluctuationsability density for the exponent field cannot be given by the
for the whole system. In order to do that, we first define thesimple product of probability densities at all positions. The

B. Generalization to fluctuations of the energy-dissipation
rate field

probability density correlation structure is uniquely determined by the Navier-
Stokes equation. However, we do not know details of the
P lel= Sle(X) — e(x 16 correlation behawgr. So, we try to phenomenolpglcally con-

el <1:I (e ()~ ))> (16) struct the probability density for the exponent field.

First, remember that we are now considering a homoge-
for the fluctuation field €,(x)}, where{e(x)} is the value of  neous, isotropic turbulence, where if a spatial variation of
€,(x) and{e} stands for the set of(x) for the whole space. exponent field appears in a some region at a given time, then
Here, we defined the produtt, by its spatial structure always tends to decay to a locally homo-

geneous exponent field. One should note that this argument
17) does not mean that the exponent field ultimately tends to a
homogeneous state. Instead, a strong chaotic nature of turbu-
lence incessantly creates a local inhomogeneity of exponent
with a(< ) being a quantity which has the dimension of field. This consideration may be expressed in such a way that
length. Without loss of generality, hereafter we put1. the true probability density for exponent field is smaller than
The bracketg- - - ) imply the average over a suitable steady-the simple product of probability densities for the whole
state turbulence ensemble. space because of the presence of spatial inhomogeneity. The
The asymptotic form oP,{€} in terms of the single point next problem is how to mathematically formulate the reduc-
probability densityP,(e) may be constructed as follows. tion of the probability density for exponent field in the pres-

11 A(X)Eexr{a‘:"f In A(x)dx

First, let us introduce the exponent ﬁd?p(X) by ence of the inhomogeneity of exponent field. To this aim,
here we borrow the idea of the Landau theory of thermody-

€(X) namic critical phenomena, particularly for the ferromagnetic

Lz In . Ising spin system, where the reduction of the probability

€ (x)= GL(—> . Z(X)= L (18 density for order parameter field in the presence of its spatial
r InE variation is expressed by adding a term given by the gradient

r of order parameter in the Landau Hamiltonian. In this way, to
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take into account the inhomogeneity of exponent field, as theontains the full microscopic informations of the velocity
simplified approximation, we propose the form field at timet. In terms of the state vectof(t), the Navier-
Stokes equationi25) is formally rewritten as the set of au-

e tonomous equations of motion
Qr{z}“(r , (22) q
_ X(H)=F(X(1)). (28)
with
Time evolution of any spatially coarse-grained variable is
_ Cr 2 determined by this set of equations of motion. For an arbi-
H{Z}_f S(Z(X))+E(VXZ(X)) dx, (22) trary initial condition, the equation of motiof28) has a

bound solution in the state space.
wherec, is a positive constant, which might depend on the The distribution
coarse-graining scale, and measures the stiffness of the
homogeneity of exponent field in the turbulence under con- _
sideration. The presence of thg£)? is crucial to the reduc- 5X(t)=H X (1) = X))
tion of the probability in the presence of spatial inhomoge-
neity of exponent field. The above form is the simplest one tmbeys the equation of motion
take into account the fluctuations of exponent field. With Eq.

(29

(21), the probability density16) is written as ;(t( ) _ _E W[Fj(x) (D) ]=H 8y(1). (30)
L\ —FIn(ele)/In(L/1)} J J
Pr{e}N(T ' 23 Let G(t) be an arbitrary function ofX(t), i.e., G(t)
=G{X(t)}. By noting
Hz}=H{z +f z(x)dx. (24)
8=z G(t)= J Sx(1)G{X}dX= J 5x(0)e'-NG{X}dX,
This is one of the fundamental proposals of the present pa- (31
per. The stochastic dynamics should be constructed so as to | ) ) .
yield the steady probability densiti¢g1) and (23). the time evolution ofG(t) is determined by
I1l. DERIVATION OF THE LANGEVIN EQUATION GH=LG), (32)
FOR AN EXPONENT FIELD BASED ON THE with the linear differential operator
HYDRODYNAMIC EQUATION
Let us consider the 3D Navier-Stokes equation for incom- L=, Fi(X) i (33
pressible fluid with the external force, i X
Jv(x,t) whereX=X(0). TheoperatorL is adjoint toH, and satisfies
i T Vux)=-Vpxt+ vV 20 (X,1) +feu(X), the relation
29 L(G1G2)=(LG1)G,+GiL G, (34
V.v(x,t)=0, (26)

for arbitrary functionsG; andG, of X.

wherewv (x,t) is the velocity field at time, andp(x,t) is the By choosing

pressure field. Hereafter, the external fofggx) is assumed o

to be time independent, and its characteristic length of spatial G(t)= H 8(z,(X,t) —z(X))=g,(1), (35

valriation is L. Namely,‘kthe szpatial power spectrut %

=52, fexta(X)€ "X dx|“) of fo(X) has significant — . ) =

mggnituxc’iyézg{ t?lxtté EN;.VG numt|)k>[ witer:[(|k)L|:27r/?_. The Wherez(xt) is defined viaz,(x,t) =In(e (x,t)/ e, )/In(L/T)

simplest form of the external field i§,(x)=Acosk_-x  With the coarse-grained energy-dissipation raiex,t) de-

+6,) with a constant magnitude vectér and a constant fined with the velocity fieldv (x,t) a_t timet. The subscript

phased,. However, the universal nature of developed turbu-Stands for the sez(x)}. Theg,(t) is thus found to obey

lence suggests that the statistics in the inertial subrange does a0,(1)

not depend on details of the mechanism of the external forc- ==L g,t). (36)

ing. Therefore, hereafter, we do not need to impose further at

detail on the external field. The state vector composed of th% o . . . . .

whole components of coordinates and positions, defined byl NS IS our starting equation to derive the Langevin dynamics

for z,(x,t) and e, (x,t).

X(1) ={vx(X,1), v (X,D)v,(X, 1)} = (X1 (1), X5(1), X5(1), . . .) We assume that the steady turbulence described by Egs.

(27) (25 and (26) with an additional boundary condition is a
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steady spatiotemporal chaos, and that for the steady turbu- S

lence under consideration, the ergodicity holds. Namely, the Ft)=— f m[Rr(X-t)gz(O)]dX, (44)
ensemble average suitably chosen is equal to the long-time

average uniquely determined for almost all initial conditions.

As known in the theory of dynamical systems, no invariantwhere 8/ 5z(x) is the functional derivativeR,(x,t) is the

density generally exists. By noting this fact, the average prorandom force appearing in the Langevin equatiorz(aft),

cedure in the following discussion will be done by using the[see Eq(52)], and is assumed to be Gaussian white, satisfy-
time average instead of the ensemble average. Let us intrqhg

duce the invariant measugg(X) by

1t (Ri(x,1))=0, (45
Iim?foG{X(s)}ds=fG{X}d,u(X)z(G), (37

t—oo

(Ri(X,DR(X",0);2) =2 (2) 8(x—=x") (1),  (46)
which holds for almost all initial conditionX(0) and an

arbitrary functionG{X(0)}, whereG{X(s)} is finite for any . .

time. Taking the long-time average ofG{X(t)l/dt €. the noise strength (z) is given by

=LG{X(t)}, one obtains

f LX) du(X) = (LG) =0, @9 I'.(2) fo f (Ri(X, DR, (X",0);2)d(x—x")dt. (47
The combination of Eq9:38) and(34) yields The microscopic expression 8 (x,t) is given in Appendix
A. In deriving Eq.(42), we have used three main approxi-
([LG1]Gy)=—(G1[LG;]) (39  mations[16]. The first is that we assumed the absence of any
collective motion of the exponent field. The second is that
for arbitrary finite functionss; andG, of X. the linear operatof is terminated at the second order with
In terms of the above definition of average, we define theespect tos/ 5z, which makes the master equation reduce to
projection operatoP by the Fokker-Planck equation. This is related to the Gaussian

approximation forR,(x,t). Third, we assumed that the La-

PG{X}=J (G{X}:2)g,(0)dz=(G{X}:z(0)), (40) Yevin equation for the exponent fied,(x.t)} derived by

eliminating other dynamical variables is Markoffian, i.e., it

o _ does not depend on exponent field in the past before

wherez(t) stands for the sefz(x,t)}, and {z,(x,5)}(s<t). The Markovian approximation can be justi-
fied if the time scales of the exponent field and the Langevin

9,(0) dom forceR, fficientl ted.
(e000= | S00E 00— Goaaonietn. TS0 ey st
(41)
Qr{z,t}=(g.(1)), (48)

with Q%{z} being the steady probability densitg1) for ex-
ponent field. The projection operatBreliminates degrees of

freedom except the exponent field. As shown in Appendix A,

by making use of the above projection operator, the equation Pet}= < 1:[ S(er(x,t) — E(X))>

of motion (36) can be transformed into the following Lange-

vin equation[11]: €

InE_L |_ -1
0g,(t = - = —
D Lo +F). @2 o) ol [G(X)'”r] @

r

In deriving Eq.(42), we used three major approximations.

by is same as the true turbulence ensemble, we get the Fokker-

Planck equations
o
ce- [ 5

0 1) G(z)
Fr(z(x))Qr{z}m dx,

Qr{z} IQ{z,t) 5 5 |Qdzt}
(43 o =f 3200 Fr(z(x))QE{Z}az(x)| Q%z} ”dx’

andF,(t) is the Langevin random force defined by (50
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€(x) These are the fundamental equations describing the spa-
IP et} L\2 5 |”€—L tiotgmporal dyna_mig:s pf exponent figld and the coarse-
=|In= j T grained energy-dissipation rate fluctuations.
r
ot r Se(X) | L
n_
r IV. LANGEVIN DYNAMICS FOR EXPONENT
FLUCTUATIONS AND ENERGY-DISSIPATION
RATE FIELD
X (e(x))?P% e} Priety A H fluctuati
. Aomogeneous Tiuctuations
5e<x> POfel ’

First, we consider the case whe{x,t) does not strongly
depend on the positiox. In this caseg, (x,t) is assumed to
6D pe spatially uniform, as the lowest approximation, and the

where P%{e} is the steady probability density23) for exponentz,(t) defined by
energy-dissipation rate field. In deriving EG1), we used

the relation (56)

L\z®
|

€(t)= EL(_

[e-(x)ef.“n E(y)dy] = 0

1)
Se (x) (X)H {e(y)}™ } (X) is also spatially uniform. In this case, it is sufficient to use
the probability densities by

We have no solid criterion to determine thelependence

of the noise intensityl’, , although it is, in principle, deter- Qi(z,t)=(8(z,(t)—2)), (57)
mined by the Navier-Stokes dynamics. However, since we

assume that the intermittency characteristic in the inertial el Inele
subrange is completely determined by the statisticz, of Pr(e.t)=(d(e(t)—€))= InL/r L/r ( InL/r ’t>’ (58)

R,(x,t) belongs to the “microscopic” degrees of freedom in

the sense of the projected-out part in the language of thinstead of the form#48) and (49).

projection-operator approach explained in Appendix A be- With the above uniformity approximation on exponent
sides those of the inertial subrange. So it is natural to use thigeld, the Langevin equations are written as

approximation that the damping constdn{z) is indepen-

dent of the “macroscopic” variable. This consideration — L\, —
might conclude thaf,(z) has no explicit dependence on ZU)=-|I InF)S (Z () +R (), (59
both z andr. Hereafter, for simplicity, we assume tHa(z)
is free fromz. . L L Ine /e
From Eq.(42), we obtain the following Langevin equa- &(1) ( ) (F In )5 ( nLir ) Rr(t)}
tions: (60)
';(X,t):_(pr ,nE) Oz} |k x), (57 where S'(2)=dS()/dz and R,(t) is the Gaussian-white
r Z, noise with the statistics

(Ri(1))=0, (RU(OR(t"))=2T"5(t—t").  (61)

—(Frlné) 57'({_2}

. L
E,—(X,t): ( InF) €,

oz z,=In(e /e )/In(LIr) The Fokker-Planck equation for the probability density
Q,(z,t) is given by
R, (x,t) |. 53
o0 9 e K Qo)

Equations Eqs(50) and (51) are the Fokker-Planck equa- (62
tions corresponding, respectively, to the Langevin equations
(52) and (53). Furthermore, by using the assumpti®l)  whereQ%(z)=(L/r)~5? is the steady probability density for

with Eq. (22), the above Langevin equations are written intoz, . The probability density?, (e,t) for e,(t) obeys

- L
z(x,t)= (Fln—[ S'(z)+¢,Viz ]+ R(xt), (59 IP (1) L\? o 0, . 9 [ Pilet)
=T In—| —| e?P(e)—| ———
at r/ de p?(e)
. L L Ine, / Ine, /
c.(x0)= |n7)e, (Frln?)[—s’( I:L/:L)+ch§ I,f“L,fL] =L (P, (), (63)
where PP(e)oxe 1(L/r) S&) with  z(e)=In(ee)l
R, (x,1)]. (55 In(L/r) as the steady probability density.

026305-6



INTERMITTENCY AND EXPONENT FIELD DYNAMICS . ..

(a) lognormal model (b) She-Leveque model
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discussed above, the existence of sudden changes(i)f
being an eminent characteristic of intermittency is the con-
sequence of the fact that the random force comes in a mul-
tiplicative way in the time evolution oé,(t).

In order to analytically calculate the time correlation func-
tion of €,(t), we hereafter in this paper employ the Gaussian
model for Q%(z). When QP(t) is not a Gaussian, the time
correlation functions can be obtained by solving the eigen-
value problem of the Fokker-Planck operatf(z) (Appen-

dix B). Let us put

1
S(2)= 45 (2= 20)% (67)

Zy is the position of the minimum ddandD is the curvature
of the functionS at the minimum. This expression is valid
nearz,. Since the average value ef(t)=¢ (L/r)>" is
independent of because of the homogeneity of turbulence,
we find[15]

FIG. 1. Temporal evolutions of coarse-grained energy-dissi-

pation ratee, (t) for homogeneous fluctuation féa) the log normal
model (64) with w=0.22 and(b) the She-Leveque mod€E5).
Time evolution ofe,(t) is plotted by observing that of,(t). For
numerical integration of Eq59), we used the Euler method with
the time incrementAt=10"3, and putT,=1. As the coarse-

graining scale is reduced, the intermittency characteristic develops.

One specific characteristic of the equation of mot{66)

for €,(t) is that the random force comes in a multiplicative
way. So, for a small value 0§ (t) at timet, it suddenly
increases because of the concavityS§f). We carried out
the time integration of Eq(60) for the two models{i) the
log normal mode[8,9],

2
2+ 2]

> (64)

1
S(z)= ﬂ

with the intermittency exponent, and(ii) the She-Leveque
model[15,17,

2 2
§—Z §—Z

S(z)=z+ —3In (65)
Inz 2e Inz

The time integration was carried out by using the Euler

method

Z<t1+1>=2<tj>—(rrln$) S'[z(t)) JAt+ 2T AN(t)),
(66)

wheretj=jAt, (j=1,2,3...,), At being the time incre-

By using the equation of motion
Z(t)=—a,(z,~20) +Ri(1), (69)
. L Ine /e
€(t)= In? €| —a, Nl 2 +R,(1)|, (70
A 71
a=5pInr (72)
the time correlation functions
Cr(t=t)=(z()z ("))~ 2, (72
Crdt—t)=(e()e(t))~ € (73
are easily obtained as
2D L —(I',/2D)[t—t’|
Crdt=) =y (T) ’ 749
L ZD(L/r)—(Fr/ZD)lt—t’\
Crt—t)=¢ (F) -1 (75)
Particularly, we get
L 2D(1—a,t—t'])
Ct—t)=¢ (F) -1 (76)

ment, andN(t;) is the Gaussian noise with the zero meanfor small[t—t’[, and the correlation function decays expo-

(N(t;))=0 and the correlation functiofN(t;)N(ty))= Ji.
The time evolutions o€, (t) calculated wittg, (t) for the two

models are drawn in Fig. 1. One observes that the intermit-

tency develops as the coarse-graining scakereduced. As

nentially as

L

Crve(t—t’)=ef(2D In?)( . (77

) — (I /2D)|t—t'|
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f eik-xlpk dk,
(82)

the equation of motion for exponent fluctuations is written as

h= f e " y(xdx,  Y(x)= 2n?

Z, ()=~ (8, +b,k?)Z, 1 () + R, (1), (83)

This gives the correlation function

([z:(x,0) = 2ol Z, (X", t') = Zo] i)

:(277)3—F’ S(k+K')e(@rrbridlt=t'
a,+bk?
(84)
ie.,
C, Ax=x",t—1")
=(z,(x,0)z,(x',t"))— 2} (85)

- (21 )J -{t; K2 e~ @ +bIA-tlgik (-x)gk - (gg)
o ar r

Furthermore, the Gaussian property?pfenables us to find

spectrum ofe,(t) in the homogeneous fluctuation case. ParameteEhe expression of the correlation function fg(x,t) as

values ard_/r=512,z,=—-D=-0.11.

for sufficiently large|t—t’|. The functionC, (t) and its
Fourier transforml,(w), the power spectrum of,(t), are

shown in Fig. 2.

B. Inhomogeneous fluctuations

Next, we take into account spatially inhomogeneous fluc
tuations ofz(x,t) ande, (x,t) with the Gaussian approxima-

tion

1 , G )
H{z}= f [E(Z(X)_Zo) + 5 (Vax)®idx, (78

Cr (x=x"t—t")
E<€r(X,t)Er(X,,t,)>—GE (87)

:EE

L 2
exp{(ln?) Crlz(x—x’,t—t’)]—l}. (88)

Particularly, one obtains

(L/r) —(I',/4D)|t|

Cr,z(o:t)Oc (89

|t|3/2 !

ef‘xfxr‘/gr
Cr Ax—x",0) (90

x=x'|

whereD = —z,(>0). With this approximation, the Langevin where&, = \2Dc, is the correlation length of exponent field

equations are obtained as

Z(x)=(—a,+b,V2)(z,—20) +R(x,1), (79

: L o [Ine /e
€(X,1)= Inr €| (—a,+b,Vy) LT —Zo| T R(X,1) |,
(80)
where
I, L L
ar:ﬁlnr, brzcrl“rln?. (81

With the use of the Fourier transformation

fluctuations. We thus find that the time correlation function
and the spatial correlation function decay in a power law
form, respectively, for short time as *2 and for short dis-
tance aslx—x’| 1, and that they decay exponentially, re-
spectively, for long time and for long distance.

V. SUMMARY AND CONCLUDING REMARKS

In the present paper, we developed a stochastic theory of
the energy-dissipation rate fluctuations in developed turbu-
lence that are closely related to the intermittency effect on
velocity structure functions and energy-dissipation rate struc-
ture functions. This was done first by proposing the static
probability density for exponent field defined via coarse-
grained energy-dissipation rate, constructed by phenomeno-
logically taking into account spatial inhomogeneity of expo-
nent field on the basis of the single-point probability density

026305-8
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considering the asymptotic form(L/r)~5?. Applying the N3 - .
projection-operator method, we derived the Langevin dy- Ve 2)=(L2(x,0);2)=(z(x.0::2), (A3)
namics for exponent field and coarse-grained energy-
dissipation rate field. Furthermore, making use of the pa- Fz(t):_f dx———
rabola approximation for the fluctuation spectr&fz), we 6z(x)
explicitly obtained the spatiotemporal correlation functions )
for exponent fluctuations and coarse-grained energy- R(X,0=(1-P)Lz(x,0)=(1-P)z(x,0. (A5)
dissipation rate fluctuations for both homogeneous and inho-
mogeneous fluctuations. It was found that the temporal an#liere, 8/ 5z(x) is the functional derivative, and we used the
spatial correlation functions typically decay in an exponen-equality
tial manner for long time and distance.

Let us add a few remarks on the present approach. As is o —
well known in nonequilibrium statistical physics near ther- Lg,(0)=— f 3200 [{Lz(x,0}g,(0)]dx.  (A6)
mal equilibrium, the projection-operator technique is quite
useful to derive a closed stochastic dynamics for relevanthe quantityV, ,(z) is called the streaming velocity and
variables under consideration. In the present paper, we triefloes not vanish provided that a collective motion in the ex-
to find a closed dynamics for the exponent field and equivaponent field is presertd].
lently the energy-dissipation rate fluctuations with the aid of ~The integrand of the time integration in the second term in
this formalism. In order to get meaningful results, we furtherthe right hand side of EqA2) is written as
proposed three major approximations. The first is the use of

et(l_P)L[Rr(X.O)gZ(O)]’ (A4)

a pure dissipative dynamics for exponent field, the second is 9.(0)
the Fokker-Planck approximation, and the third the Markov f f {LF (s)}——du(X) |ga(t—s)da
approximation. Unfortunately, we have no solid confirmation Qi{a}

to employ these approximations. Although these approxima-

tions make the treatment tractable, their physical fundations __ 9a(t—s9)
are not so obvious. Their validity or invalidity should be f“ Fo)L0a(0)du(X) Q?{a} da
examined experimentally as well as theoretically in future.
Finally, unfortunately no works on the statistical dynamics of Oa(t—s) &
energy-dissipation rate fluctuations are available as far as the = f Q%a} da(y)
authors know. We hope that laboratory experiments and nu- '
merical simulations provide data on them. The present re- - . 0
sults, particularly, Eqs(89) and (90), should be compared *[Fo){Lz(v.0}a)Qr{atIdady
with experimental and numerical results in future. ga(t—s) &
f Q%a} da(y)
APPENDIX A: PROJECTION-OPERATOR DERIVATION
OF EXPONENT FIELD DYNAMICS X[(F4(s)R,(y,0);a)Q%al}]dady, (A7)

The Langevin dynamics for,(x,t) can be derived in a where we noticed the relatiof9). Multiplying z(x) to Eq.
way similar to that in deriving the macroscopic equations of(A2) and integrating it ovez={z(x)}, one obtains
motion in thermodynamic systems as in Réfl] developed

in nonequilibrium statistical mechanics near thermal equilib- __ _ t _
rium. This is carried out as follows. By operating the identity ~ Z/(X,1) =V ,(z,())+ J D, x(z(t—s),5)ds+ R (x,t),

0
detL t (A8)
—=e'pPL+ f ds 9L pLest=PL(1-Pp)L _ _ _
dt 0 wherez, (t) stands for the sdiz,(x,t)}, and we have defined
+etP(1-P)L (A1)

D, x(z,8)= — = o LR(X9)R(Y,0); ? dy,
to g,(0), Eq.(36) is rewritten into H2:9) f QM{z} 5Z(Y)[< (9R(v.0);2)Qriz}1dy

(A9)
ag,(t) o t(1-P)L

o %[Vr,x(z)gz(t)]dx R(xt)=e R/ (x,0). (A10)

t Equation (A8) can be regarded as the Langevin equation
+J1)f (LF.(s);a)ga(t—s)dadstF(t), with the Langevin random forc®,(x,t), whose temporal
evolution is generated by the modified evolution operator
(A2)  (1-P)L [11].
By carrying out the partial integration in EGA7) with
where we defined the use of the approximation
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C(t):f G1(€L<$) )ewr(z) Q?(Z)GZ(GL(é) )

whereL,(z) is the time evolution operator fap,(z,t).

dz,

o
Pt == [ s RXDGO0]0x (A1)

Eq. (A7) is written as

1) 1) The eigenvalue equation for the operatf(z) is written
R . 0
f f §Z(X) (Rr(xrs)Rr(y=0)1Z>Qr{Z}6z(y) as
L(2Q}(2)=—-\Q}(2), (Rex=0). (B3
gz(t_s) r r
X1 —5— |dydx. (A12) . : . .
Q/{z} There exists only one eigenfunction whose eigenvalue van-

o . . ishes A =0), which is identical to the steady probability
The approximatior{A11) makes the expansion with respect density Q7(z). Except this particular eigenvalue, all other
to 6/6z and terminates at the second or@i6]. Using the  ejgenvalues satisfy Re>0. By assuming the completeness

approximation(A12) and assuming that no collective motion of the eigenfunction®}(z), and by expanding- - - ] in Eq.
exists, which implie/; ,(z) vanishes, we obtain the Lange- (B2) as

vin equation(42).
0 L ‘ AAA
APPENDIX B: TIME CORRELATION FUNCTION FOR Qr(Z)GZ(fL(?> ):; krQr(2), (B4)
SPATIALLY UNIFORM FLUCTUATIONS

with expansion coefficients}, the correlation function is

Let G4(€) and G,(€) are arbitrary functions ot. The obtained as

time correlation functionC(t)=(G1(&(t))G,(e,(0))) is

given by

C)=2 aje M= > are M+(G1)(Gy), (B5)

C= [ G IPl G de, (B ' MY
where

where L,(€) is the time evolution operator fdP,(e,t). In

terms of the exponent fluctuation=In(e/€ )/In(L/r), the
above is rewritten into

a;=kr f Gl(q(é) )Q?(z)dz. (B6)
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